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ABSTRACT 
This paper describes a constitutive model for anisotropic clayey soils based on the multilaminate framework. The 
presented version of the model is suitable for the analysis of boundary value problems under unloading or loading 
conditions. The concepts of contact sampling planes and microstructure tensor are also discussed. The model is 
implemented into the software package (PLAXIS). Benchmarking against some of the well know constitutive models is 
presented. 
 
RÉSUMÉ 
Cet article décrit un modèle constitutif pour sols argileux anisotropes basés sur le cadre multilaminate. La version 
présente du modèle convient à l'analyse de problèmes a valeur de limites dans des conditions de charge ou de 
décharge. Les concepts de plans de prélèvement de contact et de tenseur de microstructure sont également discutés. 
Le modèle est mis en application dans le logiciel (PLAXIS). Un benchmarking avec certains des modèles constitutifs 
bien connus est présenté. 
 
 
1. INTRODUCTION 
 
Constitutive models that account for all known 
characteristics of soil behaviour (e.g. strength anisotropy, 
rotation of principal stresses, bonding effects, viscous 
effects, etc.) are difficult to use.  A relevant model is 
usually employed to solve a given practical geotechnical 
problem. Among these soil characteristics, the strength 
anisotropy and rotation of principal stresses are known to 
have a significant effect on the modelling of geotechnical 
problems. 
  
The Critical State model developed at Cambridge (Wood 
1990) for normally consolidated and lightly 
overconsolidated clays is an isotropic hardening model 
and does not account for the rotation of principal stresses. 
Anisotropic hardening models (e.g. Wood and Graham 
1990, Dafalias and Manzari 2002) do account for the 
rotation of principal stresses through a transitional rule 
described for the yield surface. However, the parameters 
of these models are based on tests in which no rotation of 
principal stresses takes place (Pande and Sharma 1983).   
 
Several constitutive models have been developed in the 
past two decades to capture specific characteristics of soft 
clays. Wood and Graham (1990), Dafalias and Manzari 
(2002) modified the well-known Modified Cam Clay (MCC) 
to account for the anisotropic elasticity and reconstructed 
the yield loci to match the experimental observations. 
These models do not account for the strength anisotropy 
of the clay material. Kumbhojkar and Banerjee (1993) 
employed the plastic strains as a hardening parameter 
rather than the volumetric strain; however, the results did 
not match well with the experiment data. Furthermore, the 
model is complicated due to the large number of 
parameters required to define the yield surface. Another 
model that accounts for the undrained shear strength 
anisotropy is developed by Su and Liao (1998). The 
model was used to investigate the effect of principal 
stress orientation on the behaviour of saturated clays. The 

model parameters required two specific tests, namely, 
CKoUC and CKoUB triaxial tests. The suitability of this 
criterion to model soft clays has been proven to be limited. 
Further development was introduced by Sun and Matsuka 
(2003). They modified the anisotropic hardening 
elastoplastic model for clays which is based on the MCC. 
 
A multilaminate framework for modelling soft clay has 
been introduced by Pande and Sharma (1983). 
Extensions to the model have been presented by several 
authors (e.g. Pietruszczak and Pande, 2001, Cudny and 
Vermeer 2004, Wiltafsky et al. 2002, Schuller and 
Schweiger 2002) to model the inherent anisotropy and 
destructuration of soft clays. A brief overview of the 
multilaminate concept is provided in the following section. 
 
2. OVERVIEW  
 
2.1 The multilaminate concept 
 
The concept of multilaminate modelling is based on 
intersecting a solid block of homogenous, isotropic, elastic 
material with an infinite number of randomly oriented 
planes (Pande and Sharma 1983). These planes render 
the solid block into an assemblage of perfectly-fitting 
polyhedral blocks (Figure 1) which have rough surfaces 
behaving in elasto/visco-plastic manner. It is assumed 
that the overall deformational behaviour of the clay can be 
obtained by evaluating the deformations along these 
planes under the current effective normal and shear 

stresses (σn, τ). The opening/closing of the inter-boundary 
gap (void ratio) in relation to the initial gap (initial void 
ratio) is a contributing factor in evaluating deformations. It 
is also assumed that all contact boundaries have the 
same characteristics in sliding with no interaction between 
them.  

1213

Sea to Sky Geotechnique 2006



 
 
Figure 1. Schematic description of the multilaminate frame 
work (Cudny and Vermeer 2003) 
 
Another way of describing the multilaminate concept is by 
considering a load applied to a soil mass developing 
contact forces (of normal and tangential components) 
between adjacent particles. The overall deformational 
behaviour of the soil results from both deformation of 
individual particles and relative sliding between the 
particles. The latter is the major contribution to the overall 
strain and is accounted for in the multilaminate 
framework. Since the soil particles cannot be explicitly 
modelled, the interactions between them are considered 
in an averaged form of contact planes. The number, 
direction and orientation of the planes are governed by 
the integration rules. This means that individual planes do 
not interact and usually the same mathematical relations 
hold for all planes. However, this assumption is not strictly 
required and initial anisotropy may be easily introduced by 
varying parameter over the planes prior to loading 
(Schuller and Schweiger, 2002).  
 
Since the introduction of the multilaminate framework for 
the analysis of clayey soils in 1983, several improvements 
and extensions was introduced. A multilaminate plasticity 
formulation was presented by Pietruszczak and Pande 
(1987) to account for the volumetric and deviatoric 
hardening of soils. Kartusen (1999) incorporated the 
deviatoric hardening and non-associated flow rule in their 
multilaminate formulation. The model was used to 
simulate the shear band formation in NATM tunnelling 
(Schuller and Schweiger 2002). Wiltafsky et al. (2002) 
presented a formulation employing the double hardening 
and volumetric hardening rules. A new version of the 
multilaminate model was presented by Cudny and 
Vemeer (2004) to account for the anisotropy and 
destructuration of soft clay.  
 
2.2 Sampling planes 
 
As discussed earlier, the concept of sampling planes is 
important in the formulation of multilaminate-based 
constitutive models. Loading imposed on clay blocks 
results in plastic strains developing along these contact 
planes. Contribution of plastic strain from all planes is 
spatially averaged to obtain the plastic increment of the 
macro strain tensor 

1

d dp pk

i

ε ε
∞

=

=∑      (1) 

In the numerical implementation, this averaging of infinite 
number of planes is not impossible but it requires a large 
amount of computation. Therefore, some integration rules 
are needed. Pande et al. (1987, 1994) proposed a 13-
planes integration rule for 3D analyses and 9-planes 
integration rule for plane strain. Due to the development in 
computer technology, higher order integration rules are 
feasible today. An integration rule employing 64 contact 
planes is used by Cudny and Vermeer (2004), Recently, 
2*33-planes integration rule has been used by Scharinger 
and Schweiger (2005). 
 
The most important advantage of the multilaminate 
framework is the simplicity of formulation – standard 
isotropic elastic-plastic models can be easily converted to 
a multi-laminate version without introducing any new 
material parameters. The constitutive equation in the 
spatial coordinate reduces into the normal and shear 
stress acting on the considered plane. 
 
2.3 Soil anisotropy 
 
Strength anisotropy of the soil was not taken into account 
in the early development of the multilaminate framework, 
(Pande and Sharma (1982), Pande and Yamada (1994)). 
However, stress-induced anisotropy was considered by 
setting the initial anisotropic stress condition (Ko). This 
means that initial values of preconsolidation stress will be 
different on every sampling plane. As indicated by Cudny 
and Vemeer (2004), the degree of anisotropy gained from 
the initialization of the Ko stress state, in most cases, was 
found to be too small compared with experimental results.  
 
A formulation that accounts for the soil strength anisotropy 
was introduced by Pietruszczak and Mroz (2000). 
Strength parameters such as friction angle and cohesion 
were distributed directionally employing a microstructure 
tensor. Cudny and Vermeer (2004) indicated that for 
material like soft clays, it is more reasonable to distribute 
the overconsolidation ratio that is directly related to the 
bonding of soil fabric reach a good agreement with the 
critical state model. In this case, only the initial state 
variable is distributed directionally and changes during the 
process of straining. Relevant mathematical formulation 
required to model the strength anisotropy are described 
below. 
 
Microstructure tensor, aij, represents a measure of the 
material fabric associated with the arrangement of 
intergranular contact. The principal triad of aij is specified 
by the unit vectors e(α), α = 1, 2, 3, so that the spectral 
decomposition of aij becomes 
  
 

2

(1) (1) (2) (2) (3) (3)
1 3ij i j i j i j

a a e e a e e a e e= + +     (2) 

 
Where, a1, a2, a3 are the principal values of the 
microstructure tensors and ei and ej are the respective 
structure-orientation tensors. 
 
Considering the principal directions of the microstructure 
stress tensor and specifying the traction modulus on the 
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planes normal to principal axes (Figure 2). The 
magnitudes of the traction modulus are: 
 

2 2 2
1 11 12 13L σ σ σ= + +  

2 2 2
2 21 22 23L σ σ σ= + +     (3) 

2 2 2
3 31 32 33L σ σ σ= + +  

 
Considering the general loading vector 
 

(1) (2) (3)
1 2 3i i i i

L L e L e L e= + +     (4) 

 
The unit specifying the loading direction can be defined as 

1/ 2( )
i

i

k k

L
l

L L
=      (5) 

The directional distribution of the scalar parameter α is 
obtained using an isotropic value αo as follows 
 

(1 )
o ij i j

l lα α= + Ω      (6) 

where a deviatoric measure of the material microstructure 
Ω is defined as 

1 1
( ) /( )

3 3
ij ij ij kk kk

a a aδΩ = −     (7) 

 
Figure 2. Principal triad of the micro structure tensor a and 
the traction modulus L1, L2, L3. (Pietruszczak and Mroz, 
2000) 
 
2.4 Bonding and destructuration affect 
 
Leroueil (1979) introduced the term “destructuration” to 
present the post-yield disruption of the natural structure of 
clays. Burland (1990) characterized the structure of 
natural clays by: 
 

• The “fabric” consists of the spatial arrangement 
of soil particles and inter-particle contacts. 

• “Bonding” between particles can be destroyed 
during plastic straining. 

 
The existence of the inter-particle bonding provides 
additional resistance to yielding of soil. Lerouiel and 
Vaughan (1990) shown that the affect of bonding and 
destructuration is similar in most natural geological 

material as well as in artificially cemented and grouted 
soil. Gens and Nova (1993) presented a general 
framework for incorporating bonding and destructuration 
within the elasto-plastic constitutive models. Beyond the 
real yield surface, an “intrinsic yield surface” is introduced 
to present the size of the yield surface with no bonding 
(Wheeler, Cudny and Wiltafsky, 2003). The difference in 
size of the real yield surface and the intrinsic yield surface 
is a measure of the bonding affect. 
 
Cudny and Vemeer (2004) incorporated the influence of 
bonding and destructuration using the approach of Gens 
and Nova (1993). The mean value of bonding parameter x 
varied on each sampling plane. 
 
3. MULTILAMINATE CONSITUTIVE MODEL 
 
3.1 Elastic behaviour  
 
The fabric anisotropy of clays influences both elastic and 
plastic behaviour. For normally and slightly 
overconsolidated clay, plastic strains dominate the 
contribution of anisotropy; moreover, elastic strain often 
plays an unimportant role (Wheeler, Cudny, Neher, 
Wiltafsky 2003). Considering anisotropy in elastic 
behaviour requires complex additional parameters. 
Therefore, elastic strain will be calculated at the macro 
level in this formulation. The relationship between stress 
and strain increments is: 
 

e
kld de

ij ijkl
Dσ ε=  

 
where De is the elastic stiffness. The hypoelastic stiffness 
based on Hooke’s law (often used in critical state models) 
was chosen in the present study. 
 
For primary loading 
 

( ) 1 2
[ ( )]

(1 )(1 2 ) 2
e

ijkl ij kl ik jl jk il

E p
D

υ
υδ δ δ δ δ δ

υ υ

−
= + +

+ −
 (8) 

 
where  
 ν is Poisson ratio 

E(p) is pressure dependent Young modulus 
defined as 

3 (1 2 )
( )

*

p
E p

υ

λ

−
=   

λ* is the modified compression index estimated 
from lnp-εv diagrams. 
 

For unloading and reloading 
 

( ) 1 2
[ ( )]

(1 )(1 2 ) 2
e

ijkl ij kl ik jl jk il

E p
D

υ
υδ δ δ δ δ δ

υ υ

−
= + +

+ −
 

where  νur is Poisson ratio 
E(p) is pressure dependent Young modulus 
defined as 

3 (1 2 )
( )

*
ur

p
E p

υ

κ

−
=   
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κ* is the modified swelling index estimated from 
lnp-εv diagrams. 
 

The unload-reloading parameters are very important in 
tunnel modelling since the soil around tunnel being 
excavated is under unloading condition. 
 
In order to determine the global plastic strain, dε

p, using 
integration of the micro plastic strain, dε

pk, is carried out 
on each sampling plane. In the case of elastic, isotropic 
material, the stiffness has the same component on every 
plane. Elastic relationship between increments of micro 
stress and strain vector on the sampling plane is of the 
form: 
 

k ek ek

i ij j
d D dσ ε=      (9) 

or in a matrix form: 
 

1 3131 1

2 2323 2

3 3323 3

0 0

0 0

0 0

k ek ek

k ek ek

k ek ek

d D d

d D d

d D d

σ ε

σ ε

σ ε

     
     

=     
     
     

   (10) 

 
where  

 
3131 3232

3333

1
( )

1

1
( )

(1 2 )(1 )

ek ek

ek

D D E p

D E p

υ

υ

υ υ

= =
+

−
=

− +

 

  
Micro stress increments dσ1, dσ2, dσ3 and micro strain 
increments dε1, dε2, dε3 will be discussed in more details 
the next section. 
 
3.2 Sampling planes 
 
As mentioned above, the solution of equation (1) can be 
obtained using numerical integration rules. The higher the 
number of planes, the accurate calculated response. In 
this study, an integration rule with 64 sampling planes was 
used (see figure 3). This integration has been successfully 
used by other researchers (e.g. Schuller and Schweiger 
(2002) and Cudny and Vemeer (2004)).  
 

 
Figure 3. Integration note for a sphere (Fliege J and Maier 
U.1996) 
 
The micro stress acting on each plane can be obtained 
using the auxiliary local coordinate system with orthogonal 
unit vector x(k(1), x(k(2), x(k(3) = nk.  
 

. .
T

k k k

ij
D Dσ σ=      (13) 

 
where D is the matrix of directional cosines 
 

(1) (1) (1)
1 2 3

(2) (2) (2)
1 2 2

(3) (3) (3)
1 2 3

k k k

k k k k

k k k

x x x

D x x x

x x x

 
 

=  
 
 

 

 
Unit vectors xk(1), xk(2) are chosen arbitrarily in the 
sampling plane. It is common to select xk(1) first 
perpendicular to one of the normal vectors nk and the 
remaining vectors can be calculated as a product of nk 
and xk(2). Stress components can be calculated as follows: 
 

1 13 2 23 3 33; ;k k k k k kσ σ σ σ σ σ= = =  

 
Using the properties of the vector σ, a transform matrix (3 
x 6) can be used to transform the macro stresses to micro 
stresses acting on each sampling plane  
 

k
k

i jij
T

σσ σ= , j=1..6    (14) 

 
where 
 

(1) 2 (1) 2 (1) 2 (1) (1) (1) (1) (1) (1)
1 2 3 1 2 2 3 1 3

(2) 2 (2) 2 (2) 2 (2) (2) (2) (2) (2) (2)
1 2 3 1 2 2 3 1 3

2 2 2
1 2 3 1 2 2 3 1 3

( ) ( ) ( ) 2 2 2

( ) ( ) ( ) 2 2 2

( ) ( ) ( ) 2 2 2

k k k k k k k k k

k k k k k k k k k k

k k k k k k k k k

x x x x x x x x x

T x x x x x x x x x

n n n n n n n n n

σ

 
 

= 
 
 
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The back transformation process of the resulting 
increment of the micro plastic strain dε

pk is based on a 
spatial summation rule. Equation (1) can be substituted by 
the integration over the surface of sphere with a unit area 
with the assumption that the distribution of sampling 
planes is continuous. 
 

d dp pk

S

dSε ε= ∫      (15) 

 
Equation (15) can be calculated by a numerical integration 
with a chosen scheme of sampling plane. The global 
plastic strain increment can be written as 
 

1 1

d d
km m

p k pk k k

ij j k ij kk

k k j

g
T w d T w

ε εε ε λ
σ= =

∂
= =

∂
∑ ∑ , i=1,…,6 (16) 

where  
wk is the weight coefficient of kth plane in 
integration rule 
dλ

k is the plastic multiplier of kth plane 
g is the potential function on the kth plane 
 

The transformation matrix from the micro plastic strain 

increment to the global plastic strain increment Tεκ is 

calculated similar to Tσκ but based on the transpose 
matrix DkT 

 

. .
T

k k k

ij
D Dε σ=      (17) 

 

It is beneficial to realize that 
T

k k
T T

ε σ=  
 
3.3 Microstructure tensor 
 
To model the structural cross-anisotropy, the 
microstructure tensor, Ω, is used. One parameter Ωv 
which defines the spatial bias of cross-anisotropic 
microstructure is needed 
 

/ 2 0 0

0 0

0 0 / 2

v

ij v

v

−Ω 
 

Ω = Ω 
 −Ω 

   (11) 

 
The directional attribution from equation (6) can be written 
as: 
 

2
2(1 ) (1 ) (1 ( ) )

2
k k kv

o ij i j o ij i j o
l l n n nα α α α

Ω
= + Ω = + Ω = −  (12) 

 
where nk

  is the unit vector normal to the kth sampling 
plane. 
 
3.4 Yield surface and potential function 
 
One of the advantages of the multi-laminate framework is 
its simplicity. The isotropic constitutive relation on each of 
the sampling plane can be expressed by using only one 

micro stress invariant. An anisotropic behaviour on the  
macro level is simulated using spatial integration. 
 
The micro yield surface, shown in Figure 4, consists of 
two parts: a cone and a cap which are responsible for 
shear and compressive strengths, respectively.  
 

 
 
Figure 4. Yield surface on sampling plane (Cudny and 
Vermeer 2004) 
 
The conical portion follows Mohr-Coulomb with non-
associated flow rule. The yield and plastic potential 
functions are defined as (Duncan 1972) 
  

cone

k k k

n
f cτ σ µ= − −     (18) 

tan
cone

k k k

n
g τ σ ψ= −     (19) 

 
Where, tanµ ϕ=  and , ,cϕ ω are the effective friction 
angle, effective cohesion, and dilatancy angle, 
respectively. 
 
The cap part of the yield surface is based on MCC model 
(Cudny and Vemeer 2003) which accounts for the 
bonding affect of clays. This model takes the anisotropic 
behaviour into account by employing the microstructure 
tensor. 
 
The yield function of the cap part can be written as: 
 

2

2

2
( ) [ (1 ) ( 1 ) ]

( ) (1 ) 0

cap

k k k k k

n np n np

k

c
f

β
σ σ µ β σ β σ

µ

τ β β

= − + + + − + +

+ + =

 (20) 

 
Where, k

np
σ is a micro preconsolidation pressure, and β is 

an additional parameter that controls the steepness of the 
cap surface. This parameter allows the influence of the 
asymptotic value of 0

nc
K based on oedometer tests. For β 

= 1, the cap surface coincides with the MCC. 
 
The preconsolidation pressure is calculated by the 
equation (based on Nova and Gens framework, 1993): 
 

0
0(1 )k k k

np neq
bσ σ= + ,  2

0 0 2(1 ( ) )k k

v
b b n= + Ω   (21) 

 
Where, 0b is isotropic or average bonding parameter 
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0 0 2 2 0 2

0

[ ( ) ( 1 )( ) ]

1

k k k

n n

k

neq

c c
β

σ σ µ β τ
µ

σ
β

− − + + + − +

=
−

 

 

or  
0 2

0 0

0

( )

( )

k

k k

neq n k

n
c

τ
σ σ

µ σ µ
= +

+
 for β = 1 

 
3.5 Hardening rule 
 
For the unbounded hardening component, the standard 
law for normally consolidated clay is employed: 
 

0* * exp
* *

pk

k k n

np np

ε
σ σ

λ κ

 
=  

− 
    (22) 

 
Where, pk

n
ε is the normal invariant of plastic micro strain 

and *λ  and *κ are compression and swelling indices, 
respectively, and can be estimated using ln(p)-

v
ε diagrams. 

 
The parameter bk governs the shrinkage or bonded yield 
locus and is defined as: 
 

0 exp( )k k pk

n
b b a ε= −     (23) 

 
Where, a is an additional parameter describing the 
reduction of bonding with increasing accumulated normal 

plastic strain k pk

n
b ε=  

The resultant hardening law for the preconsolidation 
pressure on the kth sampling plane may be written as 
 

* (1 )k k k

np np
bσ σ= +      (24) 

 
In order to avoid the softening strain behaviour, the 
parameter a should not be over a maximum value  
 

0
max

1

( * *)

k

k

k

o

b
a a

b λ κ

+
< =

−
    (25) 

 
Cudny and Vemeer suggested an alternative parameter ar 
defined by the ratio of a and max

k
a  

 

max

r k

a
a

a
=      (26) 

 
4. IMPLEMENTATION INTO PLAXIS 
 
The constitutive model was implemented into Plaxis 
Professional V8.2 using the User defined soil moles 
module. The strain increments calculated by the program 
are used to calculate the macro stress state. The micro 
stresses acting on each sampling plane were, the, 
calculated by equation (19). 
  

The transformation k
T

σ in equation (19) can be reduced 

into a form of simplicity in plane strain conditions: 
 

2 1

2 2
1 2 1 2 1 2

2 2
1 2 1 2 2 3

0 0 0 0

0 ( ) ( ) 0 0

( ) ( ) 0 2 2 0

k k

k k k k k k k

k k k k k k

n n

T n n n n n n

n n n n n n

σ

 −
 

= − − + 
 
 

 (27) 

 
Note that in 2D plane strain analysis, the generation of the 
vectors xk(1) and xk(2) is not necessary.  
 
With the stress increments, the micro plastic strain on 
each sampling plane can be easily calculated using 
equations (18), (19), and (20). The micro plastic strain is 
then assembled into the global plastic strain using 
equation 16 to update the macro stresses. 
 

0 ( )ek ek pk

i i ij j j
D d dσ σ ε ε= + −     (28) 

 
Where, 0,

i i
σ σ are previous stresses and current stresses 

respectively, ,ek pk

j j
d dε ε are input strain increment by a 

program and macro plastic strain calculated by the 
subroutine respectively. 
 
An important step in this implementation is to control the 
convergence of the result. The sub-step control was used 
to control the strain increments given by the program. 
Usually, the stress increments given by the program are 
very large, which is in turn can move the stress state too 
far from the equilibrium condition. Therefore, input strains 
by the program should be divided into small strain 
increments in order to warrant the convergence of the 
iteration process. This sub-step consists of two main 
tasks: (1) determining the magnitude of the control strain 
increment and (2) determining the conditions after the 
sub-step was used i.e. tension stresses appear. 
 
5. CODE CALIBRATION 
 
5.1 Spatial integration framework 
 
A multi-laminate model with Morh-Coulomb failure 
criterion was first used to calculate the failure load of a 
strip footing in undrained/drained conditions assuming 
weightless soil. In order to obtain the appropriate 
comparison, only constant elastic modulus was adopted. 
The following parameters were used:  
 
Undrained condition: 

E=100000 kN/m3, υ =0.3, cu=10KPa, ψ  =0 

 
Drained condition: 
 E=100000 kN/m3, υ =0.3, c’=10KPa, 'ϕ =20o, 

ψ  =0 
 
The resulting failure load for drained condition is in good 
agreement with the classical Mohr-Coulomb analysis as 
shown in Figure 5. For undrained condition, the 
displacements are in good agreement; however, the 
failure load is different (see Figure 6). This may be 
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attributed to the fact that failure conditions were not 
applied simultaneously to all sampling plane. Therefore, 
soil is able to carry further loads as the failure load is 
approaching. 
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Figure 5. Comparison of load and displacement curve of 
strip footing in drain condition 
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Figure 6. Comparison of load and displacement curve of 
strip footing in undrained condition 
 
5.2 Effect of model parameters 
 
Analysis was also conducted using the Soft-Soil model 
(SSM) built into Plaxis. The yield function of the SSM is 
similar to that of the multilaminate model for β =1 and 
bonding affect is not considered. 
 
The multilaminate model is simulated with the following 
standard and intrinsic parameters: 
 
Standard parameters 

'ϕ =20o, c’=10 kN/m2, ψ =0o, υ =υ ur = 0.2, 

*κ =0.02, λ *=0.1,  
 
Intrinsic parameters: 

β =1, bo=1, Ω v=0.5, ar=1 
 
It should be noted that Poison’s ratio under unloading-
reloading condition is equal to the ratio for normal 
consolidated to calibrate process with Soft-Soil model is 
more convenient. 
 
Figure 7 shows the results for the cases of ar = 1, ar = 0.75 
while β  was kept constant to the model behaviour and 

Figure 8 show the influence of parameter β while ar was 
kept constant. 
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Figure 7. Influence of parameter ar on the multilaminate 
model. 
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Figure 8. Influence of parameter β  while ar was kept 
constant. 
 
It was observed that the model response is different from 
the Soft-Soil model. This may be attributed to some 
inactive planes that did not expand. A stress state which 
is still elastic on the macro level may cause plastic strains. 
On the other hand, a plastic stress state on a macro level 
may not violate the yield surface. Another reason is 
related to the question of how reliable the used 
parameters are.  
 
6. CONCLUSION 
 
The multilaminate model was used to simulate anisotropic 
clays which were heavily affected by bonding and 
destructuration phenomenon. These clay characteristics 
were captured by introducing the bonding parameter to 
the yield locus on each sampling plane. The model also 
took into account the anisotropic behaviour of clays by 
using microstructure tensors simulating the arrangement 
and interparticle bonding. This constitutive model is 
simple. It was successfully implemented into the 
commercial software Plaxis. Further improvement should 
be carried out such as considering elastic anisotropy and 
anisotropic strength parameter.  
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It is also important to be noted that using a sub-step 
scheme in the numerical implementation is very time-
consuming. Implicit integration should be used in each 
sampling plane to reduce the global iteration and 
magnitude of each sub step. 
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